报告题目: Consistent and powerful non-Euclidean graph-based change-point test with applications to segmenting random interfered video data
报 告 人: 史晓平
报告摘要:The change-point detection has been carried out in terms of the Euclidean minimum spanning tree (MST) and shortest Hamiltonian path (SHP), with successful applications in the determination of authorship of a classic novel, the detection of change in a network over time, the detection of cell divisions, etc. However, these Euclidean graph-based tests may fail if a dataset contains random interferences. To solve this problem, we present a powerful non-Euclidean SHP-based test, which is consistent and distribution-free. The simulation shows that the test is more powerful than both Euclidean MST- and SHP-based tests and the non-Euclidean MST-based test. Its applicability in detecting both landing and departure times in video data of bees’ flower visits is illustrated.
报告时间: 2019年5月28日(周二) 16:00-17:00
报告地点: 磬苑校区数学科学学院H306
欢迎各位老师、同学届时前往!
科学技术处
2019年5月22日




