报告题目:误差建模原理
报 告 人:孟德宇 教授(西安交通大学)
报告时间:2018年1月5日上午10:00
主办单位:计算机科学与技术学院
欢迎各位老师、同学届时前往!
科技处
2018年1月2日
报告摘要:
传统机器学习主要关注于确定性信息的建模,而在复杂场景下,机器学习方法容易出现对数据噪音的鲁棒性问题,而该鲁棒性问题与误差函数的选择紧密相关。本次报告聚焦于如何针对包含复杂噪音数据进行误差建模的鲁棒机器学习原理。这一原理对在线视频处理、医学图像恢复等问题,已体现出个性化的应用优势,该原理亦有希望能够引导出更多有趣的机器学习相关应用与发现。
报告人简介:
西安交通大学教授,博导。任西安交大大数据算法与分析技术国家工程实验室机器学习教研室负责人。共接收/发表论文80余篇,其中包括IEEE汇刊论文21篇,CCF A类会议论文30篇。曾担任ICML,NIPS等CCF A类会议程序委员会委员,AAAI2016,IJCAI2017高级程序委员会委员。目前主要聚焦于自步学习、误差建模、张量稀疏性等机器学习与计算机视觉领域的基础研究问题。




