生物信息学系列报告会

发布时间:2017-11-01

报告一: Network Based Methods for Pattern Discovery in Complex Disease

人:高琳教授(西安电子科技大学计算机学院,二级教授,博士生导师,陕西省首批三秦学者)

报告时间:2017116日上午8:509:40

报告地点:安徽大学磬苑校区行知楼负一楼报告厅

报告摘要:

The mechanism, diagnosis and prognosis of cancer is one of the core researches problem in life science and related multidisciplinary domain. The challenge is that the progression process of a cancer is a highly dimensional, time varying, and dynamic system. How do we discover cancer-causing gene patterns, and finally associate these patterns with cancer initiation and progression. The system biology and complex network provide new insight for cancer. With increasing amounts of biological data becoming available by high-throughput, we can construct the computational model of those kinds of data by network. In this talk, I will investigate network models for different patterns for biological problems. Also, I will give the graph pattern mining methods, including frequent sugraph mining for functional module and graph clustering for cancer causing patterns.

报告二:Computational Methods in Three-dimensional Reconstruction of Cryo-Electron Microscopy

人:张法博士(中科院计算所副研究员、博士生导师)

报告时间:2017116日上午9:4010:30

报告地点:安徽大学磬苑校区行知楼负一楼报告厅

报告摘要:

Cryo-electron microscopy (Cryo-EM), 2017 Nobel prize in chemistry, is increasingly becoming the premier method for determining the three-dimensional (3D) structure of protein complexes and viruses at molecular resolution. Recent significant technical breakthroughs in both hardware equipment and reconstruction algorithms promise to increase the speed of image processing and to improve the resolution of structures that Cryo-EM can be achieved. In this report, we will review the current status of Cryo-EM 3D reconstruction and discuss the technical challenges in Cryo-EM from a computational point of view. Also, we will introduce briefly the research progresses of our group in this field. 

报告三: Matrix Decomposition Methods for Analyzing Gene Expression Data

人:Senior Lecturer Dr. Markus Wagner

报告时间:2017116日上午10:3011:20

报告地点:安徽大学磬苑校区行知楼负一楼报告厅

报告摘要

Analyzing gene expression data is one of classic high-dimension-small-sample problems. Here, some matrix decomposition methods will be reviewed. Then, in order to analyze gene expression data, based sparse and low-rank constraints, some improved methods of matrix decomposition will be shown. Finally, these methods are used in gene expression data and some results are given.

主办单位:安徽大学生命科学学院

欢迎各位老师、同学届时前往!

科学技术处

2017111

报告人简介:

高琳,女,博士,西安电子科技大学计算机学院,二级教授,博士生导师,陕西省首批三秦学者,省级重点学科学术带头人。担任计算机学会“生物信息专业组”副主任,运筹学会“计算生物信息学分会”常务理事,人工智能学会“生物信息学与人工生命专业委员会”副主任,细胞生物学学会“生物信息学与系统生物学分会”理事。陕西省大数据与云计算产业技术创新战略联盟常务理事,陕西省学位委员会学科评议组第三届成员。西安电子科技大学学术委员会委员。国家科学技术奖评审专家,国家重点研发计划重点专项评审专家,国家自然基金委员会信息学部评审组专家等。在生物数据分析与挖掘、模式识别与机器学习、图论与组合优化等方面进行了长期研究,承担了国家自然科学基金重点、重大研究计划和面上等多项国家级项目,在该领域著名期刊发表论文100余篇。

张法,博士、中科院计算所副研究员、博士生导师。主要从事生物信息学算法和高性能计算方面的研究,近年来在生物显微图像处理与冷冻电镜三维重构算法等方面,取得了多项重要研究成果。开发完成了国内首款冷冻电镜电子断层三维重构平台AuTOM,其中MarkerautoICON等软件已成为该领域的首选软件,已在国内外多家单位应用。作为项目负责人和主要参与人承担了多项科技部重点研发专项、国家自然科学基金重点、国际合作重大等项目。发表高质量学术论文80余篇。任中国计算机学会生物信息学专业组秘书长,中国生物物理学会冷冻电镜分会理事。

刘金星,博士,曲阜师范大学信息科学与工程学院教授,山东济宁市自然科学学科带头人,中国计算机学会生物信息学专业委员会委员、IEEE会员、ACM会员。承担国家级项目3项、省部级项目5项。在国内外重要学术刊物与国际会议上发表论文50余篇,其中40余篇被SCI/EI检索;编著教材3部。作为首位人员,获得山东省高等学校优秀科研成果奖一等奖1项;山东省自然科学学术创新奖(三等奖)1项。

返回原图
/